经过一个多月的努力,终于完成了BP网络,参考的资料为:
1、Training feed-forward networks with the Marquardt algorithm
2、The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems
3、Neural Network Design
4、http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 中介绍的神经网络部分
以下给出Python脚本:
import numpy as npfrom math import exp, powfrom mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltimport sysimport copyfrom scipy.linalg import norm, pinvclass Layer: def __init__(self,w, b, neure_number, transfer_function, layer_index): self.transfer_function = transfer_function self.neure_number = neure_number self.layer_index = layer_index self.w = w self.b = b class NetStruct: def __init__(self, x, y, hidden_layers, activ_fun_list, performance_function = 'mse'): if len(hidden_layers) == len(activ_fun_list): activ_fun_list.append('line') self.active_fun_list = activ_fun_list self.performance_function = performance_function x = np.array(x) y = np.array(y) if(x.shape[1] != y.shape[1]): print 'The dimension of x and y are not same.' sys.exit() self.x = x self.y = y input_eles = self.x.shape[0] output_eles = self.y.shape[0] tmp = [] tmp.append(input_eles) tmp.extend(hidden_layers) tmp.append(output_eles) self.hidden_layers = np.array(tmp) self.layer_num = len(self.hidden_layers) self.layers = [] for i in range(0, len(self.hidden_layers)): if i == 0: self.layers.append(Layer([],[],\ self.hidden_layers[i], 'none', i)) continue f = self.hidden_layers[i - 1] s = self.hidden_layers[i] self.layers.append(Layer(np.random.randn(s, f),np.random.randn(s, 1),\ self.hidden_layers[i], activ_fun_list[i-1], i)) class Train: def __init__(self, net_struct, mu = 1e-3, beta = 10, iteration = 100, tol = 0.1): self.net_struct = net_struct self.mu = mu self.beta = beta self.iteration = iteration self.tol = tol def train(self, method = 'lm'): if(method == 'lm'): self.lm() def sim(self, x): self.net_struct.x = x self.forward() layer_num = len(self.net_struct.layers) predict = self.net_struct.layers[layer_num - 1].output_val return predict def actFun(self, z, activ_type = 'sigm'): if activ_type == 'sigm': f = 1.0 / (1.0 + np.exp(-z)) elif activ_type == 'tanh': f = (np.exp(z) + np.exp(-z)) / (np.exp(z) + np.exp(-z)) elif activ_type == 'radb': f = np.exp(-z * z) elif activ_type == 'line': f = z return f def actFunGrad(self, z, activ_type = 'sigm'): if activ_type == 'sigm': grad = self.actFun(z, activ_type) * (1.0 - self.actFun(z, activ_type)) elif activ_type == 'tanh': grad = 1.0 - self.actFun(z, activ_type) * self.actFun(z, activ_type) elif activ_type == 'radb': grad = -2.0 * z * self.actFun(z, activ_type) elif activ_type == 'line': m = z.shape[0] n = z.shape[1] grad = np.ones((m, n)) return grad def forward(self): layer_num = len(self.net_struct.layers) for i in range(0, layer_num): if i == 0: curr_layer = self.net_struct.layers[i] curr_layer.input_val = self.net_struct.x curr_layer.output_val = self.net_struct.x continue before_layer = self.net_struct.layers[i - 1] curr_layer = self.net_struct.layers[i] curr_layer.input_val = curr_layer.w.dot(before_layer.output_val) + curr_layer.b curr_layer.output_val = self.actFun(curr_layer.input_val, self.net_struct.active_fun_list[i - 1]) def backward(self): layer_num = len(self.net_struct.layers) last_layer = self.net_struct.layers[layer_num - 1] last_layer.error = -self.actFunGrad(last_layer.input_val, self.net_struct.active_fun_list[layer_num - 2]) layer_index = range(1, layer_num - 1) layer_index.reverse() for i in layer_index: curr_layer = self.net_struct.layers[i] curr_layer.error = (last_layer.w.transpose().dot(last_layer.error)) \ * self.actFunGrad(curr_layer.input_val,self.net_struct.active_fun_list[i - 1]) last_layer = curr_layer def parDeriv(self): layer_num = len(self.net_struct.layers) for i in range(1, layer_num): befor_layer = self.net_struct.layers[i - 1] befor_input_val = befor_layer.output_val.transpose() curr_layer = self.net_struct.layers[i] curr_error = curr_layer.error curr_error = curr_error.reshape(curr_error.shape[0]*curr_error.shape[1], 1, order='F') row = curr_error.shape[0] col = befor_input_val.shape[1] a = np.zeros((row, col)) num = befor_input_val.shape[0] neure_number = curr_layer.neure_number for i in range(0, num): a[neure_number*i:neure_number*i + neure_number,:] = \ np.repeat([befor_input_val[i,:]],neure_number,axis = 0) tmp_w_par_deriv = curr_error * a curr_layer.w_par_deriv = np.zeros((num, befor_layer.neure_number * curr_layer.neure_number)) for i in range(0, num): tmp = tmp_w_par_deriv[neure_number*i:neure_number*i + neure_number,:] tmp = tmp.reshape(tmp.shape[0] * tmp.shape[1], order='C') curr_layer.w_par_deriv[i, :] = tmp curr_layer.b_par_deriv = curr_layer.error.transpose() def jacobian(self): layers = self.net_struct.hidden_layers row = self.net_struct.x.shape[1] col = 0 for i in range(0, len(layers) - 1): col = col + layers[i] * layers[i + 1] + layers[i + 1] j = np.zeros((row, col)) layer_num = len(self.net_struct.layers) index = 0 for i in range(1, layer_num): curr_layer = self.net_struct.layers[i] w_col = curr_layer.w_par_deriv.shape[1] b_col = curr_layer.b_par_deriv.shape[1] j[:, index : index + w_col] = curr_layer.w_par_deriv index = index + w_col j[:, index : index + b_col] = curr_layer.b_par_deriv index = index + b_col return j def gradCheck(self): W1 = self.net_struct.layers[1].w b1 = self.net_struct.layers[1].b n = self.net_struct.layers[1].neure_number W2 = self.net_struct.layers[2].w b2 = self.net_struct.layers[2].b x = self.net_struct.x p = [] p.extend(W1.reshape(1,W1.shape[0]*W1.shape[1],order = 'C')[0]) p.extend(b1.reshape(1,b1.shape[0]*b1.shape[1],order = 'C')[0]) p.extend(W2.reshape(1,W2.shape[0]*W2.shape[1],order = 'C')[0]) p.extend(b2.reshape(1,b2.shape[0]*b2.shape[1],order = 'C')[0]) old_p = p jac = [] for i in range(0, x.shape[1]): xi = np.array([x[:,i]]) xi = xi.transpose() ji = [] for j in range(0, len(p)): W1 = np.array(p[0:2*n]).reshape(n,2,order='C') b1 = np.array(p[2*n:2*n+n]).reshape(n,1,order='C') W2 = np.array(p[3*n:4*n]).reshape(1,n,order='C') b2 = np.array(p[4*n:4*n+1]).reshape(1,1,order='C') z2 = W1.dot(xi) + b1 a2 = self.actFun(z2) z3 = W2.dot(a2) + b2 h1 = self.actFun(z3) p[j] = p[j] + 0.00001 W1 = np.array(p[0:2*n]).reshape(n,2,order='C') b1 = np.array(p[2*n:2*n+n]).reshape(n,1,order='C') W2 = np.array(p[3*n:4*n]).reshape(1,n,order='C') b2 = np.array(p[4*n:4*n+1]).reshape(1,1,order='C') z2 = W1.dot(xi) + b1 a2 = self.actFun(z2) z3 = W2.dot(a2) + b2 h = self.actFun(z3) g = (h[0][0]-h1[0][0])/0.00001 ji.append(g) jac.append(ji) p = old_p return jac def jjje(self): layer_number = self.net_struct.layer_num e = self.net_struct.y - \ self.net_struct.layers[layer_number - 1].output_val e = e.transpose() j = self.jacobian() #check gradient #j1 = -np.array(self.gradCheck()) #jk = j.reshape(1,j.shape[0]*j.shape[1]) #jk1 = j1.reshape(1,j1.shape[0]*j1.shape[1]) #plt.plot(jk[0]) #plt.plot(jk1[0],'.') #plt.show() jj = j.transpose().dot(j) je = -j.transpose().dot(e) return[jj, je] def lm(self): mu = self.mu beta = self.beta iteration = self.iteration tol = self.tol y = self.net_struct.y self.forward() pred = self.net_struct.layers[self.net_struct.layer_num - 1].output_val pref = self.perfermance(y, pred) for i in range(0, iteration): print 'iter:',i, 'error:', pref #1) step 1: if(pref < tol): break #2) step 2: self.backward() self.parDeriv() [jj, je] = self.jjje() while(1): #3) step 3: A = jj + mu * np.diag(np.ones(jj.shape[0])) delta_w_b = pinv(A).dot(je) #4) step 4: old_net_struct = copy.deepcopy(self.net_struct) self.updataNetStruct(delta_w_b) self.forward() pred1 = self.net_struct.layers[self.net_struct.layer_num - 1].output_val pref1 = self.perfermance(y, pred1) if (pref1 < pref): mu = mu / beta pref = pref1 break mu = mu * beta self.net_struct = copy.deepcopy(old_net_struct) def updataNetStruct(self, delta_w_b): layer_number = self.net_struct.layer_num index = 0 for i in range(1, layer_number): before_layer = self.net_struct.layers[i - 1] curr_layer = self.net_struct.layers[i] w_num = before_layer.neure_number * curr_layer.neure_number b_num = curr_layer.neure_number w = delta_w_b[index : index + w_num] w = w.reshape(curr_layer.neure_number, before_layer.neure_number, order='C') index = index + w_num b = delta_w_b[index : index + b_num] index = index + b_num curr_layer.w += w curr_layer.b += b def perfermance(self, y, pred): error = y - pred return norm(error) / len(y) def plotSamples(self, n = 40): x = np.array([np.linspace(0, 3, n)]) x = x.repeat(n, axis = 0) y = x.transpose() z = np.zeros((n, n)) for i in range(0, x.shape[0]): for j in range(0, x.shape[1]): z[i][j] = self.sampleFun(x[i][j], y[i][j]) fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(x, y, z, cmap='autumn', cstride=2, rstride=2) ax.set_xlabel("X-Label") ax.set_ylabel("Y-Label") ax.set_zlabel("Z-Label") plt.show()def sinSamples(n): x = np.array([np.linspace(-0.5, 0.5, n)]) #x = x.repeat(n, axis = 0) y = x + 0.2 z = np.zeros((n, 1)) for i in range(0, x.shape[1]): z[i] = np.sin(x[0][i] * y[0][i]) X = np.zeros((n, 2)) n = 0 for xi, yi in zip(x.transpose(), y.transpose()): X[n][0] = xi X[n][1] = yi n = n + 1 return X,zdef peaksSamples(n): x = np.array([np.linspace(-3, 3, n)]) x = x.repeat(n, axis = 0) y = x.transpose() z = np.zeros((n, n)) for i in range(0, x.shape[0]): for j in range(0, x.shape[1]): z[i][j] = sampleFun(x[i][j], y[i][j]) X = np.zeros((n*n, 2)) x_list = x.reshape(n*n,1 ) y_list = y.reshape(n*n,1) z_list = z.reshape(n*n,1) n = 0 for xi, yi in zip(x_list, y_list): X[n][0] = xi X[n][1] = yi n = n + 1 return X,z_list.transpose()def sampleFun(x, y): z = 3*pow((1-x),2) * exp(-(pow(x,2)) - pow((y+1),2)) \ - 10*(x/5 - pow(x, 3) - pow(y, 5)) * exp(-pow(x, 2) - pow(y, 2)) \ - 1/3*exp(-pow((x+1), 2) - pow(y, 2)) return zif __name__ == '__main__': hidden_layers = [10,10] #设置网络层数,共两层,每层10个神经元 activ_fun_list = ['sigm','sigm']#设置隐层的激活函数类型,可以设置为tanh,radb,tanh,line类型,如果不显式的设置最后一层为line [X, z] = peaksSamples(20) #产生训练数据点 X = X.transpose() bp = NetStruct(X, z, hidden_layers, activ_fun_list) #初始化网络信息 tr = Train(bp) #初始化训练网络的类 tr.train() #训练 [XX, z0] = peaksSamples(40) #产生测试数据 XX = XX.transpose() z1 = tr.sim(XX) #用训练好的神经网络预测数据,z1为预测结果 fig = plt.figure() ax = fig.add_subplot(111) ax.plot(z0[0]) #真值 ax.plot(z1[0],'r.') #预测值 plt.legend((r'real data', r'predict data')) plt.show()以上代码计算的结果如下图,由于初始值等原因的影响偶尔收敛效果会变差,不过大多数时候都可以收敛到下图的结果,以后再改进,欢迎指正。